A Spoonful of Medicine for Meta-Analysis: Introducing Meta-Sen

James G. Field West Virginia University

Frank A. Bosco, Sven Kepes Virginia Commonwealth University

> SMA PDI | October 11, 2019 Norfolk, VA

All submission materials (e.g., original submission, PowerPoint slides, sample data sets) can be found at: https://jamiefield.github.io/research/sma2019

Agenda

- What is meta-analysis and why is so important?
- The current research environment
- Threats to our cumulative scientific knowledge: outliers and publication bias
- What is sensitivity analysis?
- Live demonstration of Meta-Sen
- Recommendations for minimizing the impact of outliers and/or PB
- Discussion/questions/comments from the audience
- Additional slides
 - Review of two outlier assessment methods
 - Review of five publication bias assessment methods
 - Results that illustrate the combined effect of outliers and PB on recently published meta-analytic datasets

- Meta-analysis is a statistical technique by which information from independent studies is assimilated
 - Field, A. P. (2011)
- Meta-analysis is a quantitative method used to combine the quantitative outcomes (effect sizes) of primary research studies.
 - Combines the results from two or more studies
 - Estimates an 'average' effect between two constructs
- Meta-analysis is the statistical or data analytic part of a systematic review of a research topic.

- There are two common approaches to meta-analysis
 - The Hunter and Schmidt (2004; 2015) approach, which is most common in organizational research
 - The Hedges and Olkin (1985) approach
- For a description of both approaches, and their differences, please refer to Kepes et al. (2013)
- Important note:
 - We use the Hedges and Olkin (1985) approach as most sensitivity analysis techniques have not been developed for psychometrically-adjusted effect sizes

• An example from the published literature

Study ID	Reference	Year	IV	DV n	r
1	Mitchell, Holtom, Lee, & Erez	2001	On-the-job embeddedness	Turnover 17	7 -0.24
2	Crossley, Bennett, Jex, & Burnfield	2007	On-the-job embeddedness	Turnover 30	5 -0.08
3	Mitchell, Holtom, Lee, & Erez	2001	On-the-job embeddedness	Turnover 208	8 -0.21
4	Ramesh & Gelfand	2010	On-the-job embeddedness	Turnover 474	4 -0.13
5	Giosan, Holtom, & Watson	2005	On-the-job embeddedness	Turnover 122	2 -0.30
6	Mallol, Holtom, & Lee	2007	On-the-job embeddedness	Turnover 164	4 -0.16
7	Lee, Mitchell, & Holtom	2004	On-the-job embeddedness	Turnover 809	ə -0.11
8	Kraimer, Shaffer, Harrison, & Ren	2012	On-the-job embeddedness	Turnover 112	2 -0.17
9	Ramesh & Gelfand	2010	On-the-job embeddedness	Turnover 323	3 -0.14
10	Harris, Wheeler, & Kacmar	2011	On-the-job embeddedness	Turnover 20	5 -0.19
11	Allen	2006	On-the-job embeddedness	Turnover 222	2 -0.23
12	Wheeler, Halbesleben, & Sablynski	2011	On-the-job embeddedness	Turnover 142	2 -0.26
13	Tanova & Holtom	2008	On-the-job embeddedness	Turnover 927	7 -0.08
14	Wheeler, Halbesleben, & Sablynski	2011	On-the-job embeddedness	Turnover 134	4 -0.19
15	Mallol, Holtom, & Lee	2007	On-the-job embeddedness	Turnover 164	4 -0.13
16	Tharenou & Caulfield	2010	On-the-job embeddedness	Turnover 540	5 -0.18
17	Smith, Holtom, & Mitchell	2011	On-the-job embeddedness	Turnover 750	0 -0.25
18	Smith, Holtom, & Mitchell	2011	On-the-job embeddedness	Turnover 1,08	39 -0.19

Study ID	Reference	Year	IV	DV	n	r	sei
1	Mitchell, Holtom, Lee, & Erez	2001	On-the-job embeddedness	Turnover	177	-0.24	0.0758
2	Crossley, Bennett, Jex, & Burnfield	2007	On-the-job embeddedness	Turnover	306	-0.08	0.0574
3	Mitchell, Holtom, Lee, & Erez	2001	On-the-job embeddedness	Turnover	208	-0.21	0.0698
4	Ramesh & Gelfand	2010	On-the-job embeddedness	Turnover	474	-0.13	0.0461
5	Giosan, Holtom, & Watson	2005	On-the-job embeddedness	Turnover	122	-0.3	0.0917
6	Mallol, Holtom, & Lee	2007	On-the-job embeddedness	Turnover	164	-0.16	0.0788
7	Lee, Mitchell, & Holtom	2004	On-the-job embeddedness	Turnover	809	-0.11	0.0352
8	Kraimer, Shaffer, Harrison, & Ren	2012	On-the-job embeddedness	Turnover	112	-0.17	0.0958
9	Ramesh & Gelfand	2010	On-the-job embeddedness	Turnover	323	-0.14	0.0559
10	Harris, Wheeler, & Kacmar	2011	On-the-job embeddedness	Turnover	205	-0.19	0.0704
11	Allen	2006	On-the-job embeddedness	Turnover	222	-0.23	0.0676
12	Wheeler, Halbesleben, & Sablynski	2011	On-the-job embeddedness	Turnover	142	-0.26	0.0848
13	Tanova & Holtom	2008	On-the-job embeddedness	Turnover	9277	-0.08	0.0104
14	Wheeler, Halbesleben, & Sablynski	2011	On-the-job embeddedness	Turnover	134	-0.19	0.0874
15	Mallol, Holtom, & Lee	2007	On-the-job embeddedness	Turnover	164	-0.13	0.0788
16	Tharenou & Caulfield	2010	On-the-job embeddedness	Turnover	546	-0.18	0.0429
17	Smith, Holtom, & Mitchell	2011	On-the-job embeddedness	Turnover	750	-0.25	0.0366
18	Smith, Holtom, & Mitchell	2011	On-the-job embeddedness	Turnover	1,089	-0.19	0.0303

Why are Meta-Analyses so Important?

- Meta-analytic reviews are a primary way to summarize, integrate, and synthesize areas of research
 - Schmidt & Hunter (2015)
- Allows fields to build a cumulative scientific knowledge
 - Kepes & McDaniel (2015)
- Meta-analytic results serve as input for other analytic techniques that allow researchers to test theory
 - E.g., relative importance analysis; meta-analytic structural equation modeling
- Meta-analytic results often are used to inform evidence-based management
 - Banks et al. (2011); Kepes et al. (2014)

RESEARCH ARTICLE

Estimating the reproducibility of psychological science

Open Science Collaboration*,†

+ See all authors and affiliations

Industrial and Organizational Psychology PERSPECTIVES ON SCIENCE AND PRACTICE 0

Industrial and Organizational Psychology, **6** (2013), 252–268. Copyright © 2013 Society for Industrial and Organizational Psychology. 1754-9426/13

FOCAL ARTICLE

How Trustworthy Is the Scientific Literature in Industrial and Organizational Psychology?

SCIENCE

Psychology's Replication Crisis Can't Be Wished Away

It has a real and heartbreaking cost.

J Bus Psychol (2011) 26:105-121 DOI 10.1007/s10869-010-9185-2

Meta-analytic Decisions and Reliability: A Serendipitous Case of Three Independent Telecommuting Meta-analyses

Levi R. G. Nieminen · Jessica M. Nicklin · Tara K. McClure · Madhura Chakrabarti

Science Contents - News - Careers - Journals -

Meta-analyses were supposed to end scientific debates. Often, they only cause more controversy

By Jop de Vrieze | Sep. 18, 2018 , 4:15 PM

Original Investigation

The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses

JOHN P.A. IOANNIDIS

Meta-Analytic Choices and Judgment Calls: Implications for Theory Building and Testing, Obtained Effect Sizes, and Scholarly Impact

> Herman Aguinis Dan R. Dalton Indiana University Frank A. Bosco Charles A. Pierce University of Memphis Catherine M. Dalton Indiana University

- Meta-analysis is not immune from scrutiny
 - "All the old methods are in doubt. Even meta-analyses, which once were thought to yield a gold standard for evaluating bodies of research now seem somewhat worthless. "Meta-analyses are f*cked," Inzlicht warned me. If you analyze 200 lousy studies, you'll get a lousy answer in the end. It's garbage in, garbage out."

• What could be driving opinions like these?

Outliers An observation that appears "to deviate markedly from other members of the sample in which it occurs" (Grubbs, 1969, p. 1)

- Outcome-level causes of outliers: Effect size magnitude
 - Samples that have an effect size that diverges from all other samples in the dataset may need to be removed before performing a meta-analysis as they could introduce residual heterogeneity that may threaten its results and conclusions.

- Outcome-level causes of outliers: Effect size magnitude
 - Each $\stackrel{\wedge}{\not\sim}$ represents an effect size in the Jiang et al. (2012) dataset (our running example)

- 50

- Outcome-level causes of outliers: Effect size magnitude
 - Each $\stackrel{\wedge}{\not\sim}$ represents an effect size in the Jiang et al. (2012) dataset (our running example)

- Outcome-level causes of outliers: Effect size magnitude
 - Each $\stackrel{\wedge}{\not\sim}$ represents an effect size in the Jiang et al. (2012) dataset (our running example)

- Sample-level causes of outliers: Sample size
 - Given that both the Hedges and Olkin (1985; see also Hedges & Olkin, 2014) and Schmidt and Hunter (2015) approaches to meta-analysis estimate the meta-analytic mean by giving more precise studies more weight, relatively large samples can have an undue influence on the meta-analytic mean.

- Sample-level causes of outliers: Sample size
 - The sample sizes included in Jiang et al.'s (2012) metaanalytic dataset range from 122 → 1,089

Threats to our Cumulative Knowledge	Study ID	Sample size
	1	177
	2	306
• Sample-level causes of outliers: Sample size		208
 The sample sizes included in Jiang et al.'s (2012) meta- analytic dataset range from 122 → 1,089 	4	474
	5	122
	6	164
	7	809
	8	112
	9	323
	10	205
	11	222
	12	142
	13	9277
	14	134
	15	164
	16	546
	17	750
23/45		1,089

Sample size

177

		1//
	2	306
• Sample-level causes of outliers: Sample size	3	208
• The sample sizes included in Jiang et al.'s (2012) meta-	4	474
 analytic dataset range from 122 → 1,089 Imagine adding an additional effect size that had a 	5	122
	6	164
	7	809
corresponding sample size of 50,000	8	112
 Given that meta-analyses weight by precision, this addition would likely have a noticeable effect on the meta-analytic mean effect size estimate 	9	323
	10	205
	11	222
mean encer size estimate	12	142
	13	9277
	14	134
	15	164
	16	546
	17	750
24/45	18	1.089

Outliers

Outcome-level causes (e.g., effect size magnitude, *p*-value)

Sample-level causes (e.g., sample size, sample type) **Publication bias**

A systematic suppression of research findings, which causes the available literature to be unrepresentative of all completed research on a relation of interest

Outcome-level causes (e.g., effect size magnitude, *p*-value)

Outliers

Sample-level causes (e.g., sample size, sample type) **Publication bias**

Outcome-level causes (e.g., author decisions, editorial review process, organizational constraints)

26/45

Outliers

Outcome-level causes (e.g., effect size magnitude, *p*-value)

Sample-level causes (e.g., sample size, sample type)

Publication bias

Outcome-level causes (e.g., author decisions, editorial review process, organizational constraints)

Sample-level causes (e.g., author decisions, editorial review process, organizational constraints)

Outliers

Outcome-level causes (e.g., effect size magnitude, *p*-value)

Sample-level causes (e.g., sample size, sample type) **Publication bias**

Outcome-level causes (e.g., author decisions, editorial review process, organizational constraints)

Sample-level causes (e.g., author decisions, editorial review process, organizational constraints)

- Combined outlier and publication bias effect
 - Rarely tested!
 - However, outlier-induced heterogeneity may limit the efficacy of publication bias detection methods (Kepes & McDaniel, 2015; Peters et al., 2007; Terrin et al., 2003).
 - Some scholars have started to examine the possibility of a combined effect
 - (Benjamin et al.; in press; Kepes & McDaniel, 2015; Kepes et al., 2017; and Kepes & Thomas, 2018).

• Combined outlier and publication bias effect

• Combined outlier and publication bias effect

• Suggests that the publication bias detection result overestimates the distorting effect of publication bias!

What is Sensitivity Analysis?

- A sensitivity analysis examines the extent to which results and conclusions are altered as a result of changes in the data or analysis approach
 - Greenhouse & Iyengar (2009)
- If the conclusions do not change as a result of the sensitivity analysis, one can state that the conclusions are robust and one can have greater confidence in the conclusions.

What is Sensitivity Analysis?

- "Sensitivity analysis is the most powerful tool we have for assessing the influence of the specific choices made by the researchers"
 - Aytug, Rothstein, Zhou, & Kern (2012, p. 118)

What is Sensitivity Analysis?

- Sensitivity analyses are rarely conducted in meta-analyses in the organizational sciences
 - Kepes, McDaniel, Brannick, & Banks (2013)
- Because meta-analyses have a strong impact on our literatures, sensitivity analyses need to become much more common (and reported) in meta-analyses.
Live Meta-Sen Demonstration

- <u>https://metasen.shinyapps.io/gen1/</u>
- You can find some additional sample data files here: <u>https://jamiefield.github.io/research/sma2019</u>

- Ultimately, it is always best to report the range of results
- The effect of PB can be reduced by
 - Conducting extremely thorough literature reviews
 - Using research registries
 - Changing the journal review process
 - Altering author and organization norms
 - Obsessing less about theoretical contributions
 - Supporting data repositories like metaBUS

• Step 1: Conduct a meta-analysis on original dataset

- Step 1: Conduct a meta-analysis on original dataset
- Step 2: Perform osr and recommended PB analyses

- Step 1: Conduct a meta-analysis on original dataset
- Step 2: Perform osr and recommended PB analyses
- Step 3: Perform Viechtbauer and Cheung's (2010) influence diagnostics

- Step 1: Conduct a meta-analysis on original dataset
- Step 2: Perform osr and recommended PB analyses
- Step 3: Perform Viechtbauer and Cheung's (2010) influence diagnostics
- Step 4: If detected, remove outliers and repeat Steps 1 and 2. If outliers are not detected in Step 3, proceed directly to Step 5

- Step 1: Conduct a meta-analysis on original dataset
- Step 2: Perform osr and recommended PB analyses
- Step 3: Perform Viechtbauer and Cheung's (2010) influence diagnostics
- Step 4: If detected, remove outliers and repeat Steps 1 and 2. If outliers are not detected in Step 3, proceed directly to Step 5
- Step 5: Report BRE and MRE (see Kepes et al., 2012)**

- Step 1: Conduct a meta-analysis on original dataset
- Step 2: Perform osr and recommended PB analyses
- Step 3: Perform Viechtbauer and Cheung's (2010) influence diagnostics
- Step 4: If detected, remove outliers and repeat Steps 1 and 2. If outliers are not detected in Step 3, proceed directly to Step 5
- Step 5: Report BRE and MRE (see Kepes et al., 2012)**
- Step 6: Visually inspect the range of results before and after outlier removal

- Step 1: Conduct a meta-analysis on original dataset
- Step 2: Perform osr and recommended PB analyses
- Step 3: Perform Viechtbauer and Cheung's (2010) influence diagnostics
- Step 4: If detected, remove outliers and repeat Steps 1 and 2. If outliers are not detected in Step 3, proceed directly to Step 5
- Step 5: Report BRE and MRE (see Kepes et al., 2012)**
- Step 6: Visually inspect the range of results before and after outlier removal
- Step 7: Assess the robustness of recommendations for practice

Thank you for attending today!

Feel free to follow up with me james.field2@mail.wvu.edu

In the following slides...

- I review two outlier and five publication bias assessment methods used by the Meta-Sen app
- I present results that illustrate an outlier and PB effect, as well as a combined effect of these phenomena, on meta-analytic findings on employee turnover

- One form of sensitivity analysis is to conduct meta-analyses with and without outliers
- Only 3% of meta-analyses conduct outlier analyses (Aguinis et al., 2011)
 - Effect size outlier (large or small)
 - Graphical methods and statistical tests for outliers (e.g., SAMD statistic; Beal, Corey, & Dunlap, 2002)
 - Sample size outlier (large)
 - Sample sizes influence effect size weights in meta-analyses.

- One sample removed analysis:
 - Individual samples are removed one-by-one from the dataset and the point estimate is recalculated after each removal.
 - Thus, a one-sample removed analysis, yields *k*-1 meta-analytic mean estimates.
 - Given the Jiang, et al. (2012) dataset included 18 effect sizes, the one-sample removed analysis will produce 17 estimates of the meta-analytic mean
 - Important questions to ask:
 - How much does the distribution mean change when a given sample is excluded from the analysis?
 - Are the results due to a small number of influential samples?

- Viechtbauer and Chueng's (2010; Viechtbauer [2015]) multivariate, multidimensional influence diagnostics:
 - A framework that calculates leave-one-out analyses for
 - externally standardized residuals
 - DFFITS value,
 - Cook's distance,
 - covariance ratio,
 - the leave-one-out amount of heterogeneity,
 - the leave-one-out test statistic for the test of heterogeneity, and
 - DFBETAS values.
 - In addition, an inspection of the hat matrix is examined for highly influential observations.

• Viechtbauer and Chueng's (2010; Viechtbauer [2015]) multivariate, multidimensional influence diagnostics:

- Symmetry-based methods
 - When sampling error is the sole source of variance, and the sampling distribution is symmetrical, then a funnel plot can be examined for symmetry.
 - A funnel plot is a plot of effect sizes by precision (1/standard error).
 - Examples of symmetry-based methods include (1) trim and fill models and (2) contour-enhanced funnel plot

- Trim and fill models
 - The trim and fill method is probably the most useful symmetry based method in that it estimates what the population distribution would be if the missing studies were located
 - Analyses are re-conducted on the distribution containing both the observed data and the imputed data

Fisher's z Transformed Correlation Coefficient

FE trim and fill model of Jiang et al.'s meta-analytic distribution

- Trim and fill models
 - It is unwise to consider this distribution of observed and imputed data as the "true" distribution
 - More reasonable to compare the observed mean with the trim and fill adjusted mean
 - If the mean drops from .45 to .15, one should worry about publication bias
 - But, one should not assume that .15 is the best estimate of the population mean

Fisher's z Transformed Correlation Coefficient

FE trim and fill model of Jiang et al.'s meta-analytic distribution

- Some asymmetry is not due to publication bias but to "small sample effects."
 - A medicine may work best with the sickest (small N) patients and work less well with moderately sick (larger N) patients.
 - Small sample studies may yield larger effects due to better measures that are more difficult to collect in larger samples.

- Contour-enhanced funnel plots
 - Related to the funnel plot and trim and fill is the contour-enhanced funnel plot, which displays graphically whether the imputed samples are a function of statistical significance (Peters et al., 2008).
 - Helps separate publication bias effects from "small sample effects."

Fisher's z Transformed Correlation Coefficient

Contour enhanced funnel plot of Jiang et al.'s meta-analytic distribution

- A priori selection models
 - Selection models, also called weight-function models, originated in econometrics to estimate missing data at the item level.
 - Hedges and Vevea introduced the method to the publication bias literature
 - Hedges (1992)
 - Vevea and Hedges (1995)
 - Relatively robust to heterogeneity
 - Vevea and Woods (2005)

- A priori selection models
 - As with trim and fill, selection models estimate what the population distribution would be if the missing studies were located and included in the meta-analytic distribution
 - When one is conducting a meta-analysis without regard to suppressed studies, one is implicitly assuming that one has 100% of the completed studies
 - This assumption is unlikely to be valid
 - Vevea and Woods (2005)
- Selection models permit you to make other assumptions

Supplemental slide 12/28

- A priori selection models
 - Selection models assume that the probability that an effect size is included in a distribution is a function of a characteristic of that effect size
 - This characteristic is usually the level of statistical significance
 - Consider an *a priori* assumed selection model

- A priori selection models
 - Selection models assume that the probability that an effect size is included in a distribution is a function of a characteristic of that effect size
 - This characteristic is usually the level of statistical significance
 - Consider an *a priori* assumed selection model

Significance level	Probability of being in the distribution
$p \le .001$	100%
$.001$	90%
$.005$	70%
p > .10	30%

- Cumulative meta-analysis by precision
 - Sort samples by sample size or precision
 - Conduct a meta-analysis starting with one effect size (the most precise effect) and add an additional effect size (with increasingly less precision) with each iteration of the meta-analysis
 - Inspect the meta-analytic means for drift

Correlation Coefficient

- Cumulative meta-analysis by precision
 - Gives similar results to that obtained in symmetry based methods
 - When symmetry analyses suggest small effects are suppressed, cumulative meta-analysis will show a drift toward larger effects
 - When symmetry analyses suggest larger effects are suppressed, cumulative meta-analysis will show a drift toward smaller effects.

- Precision-effect test-precision effect estimate with standard error analysis (PET-PEESE)
 - A relatively new PB detection technique (Stanley and Doucouliagos, 2014)
 - This method is a combination of two regression models (PET and PEESE)
 - Conditional decision rule that determines which of the two models should be used
 - PET → Observed effect sizes are regressed on their corresponding standard errors using meta-regression techniques
 - PEESE \rightarrow Observed effect sizes are regressed on their corresponding *squared* SE

- Comprehensive sensitivity analyses were conducted on 84 recently published meta-analytic distributions on employee turnover
 - Examined the trustworthiness of these distributions
 - Does a greater threat to the trustworthiness arise from outliers or publication bias?
 - Assessed if meta-analytic and PB results changed after outlier removal
 - Examined whether or not recommendations for practice were robust to outliers and/or PB
- We assessed the generalizability of our results to other management topics by performing comprehensive sensitivity analyses on an additional 103 meta-analytic distributions
 - These data were taken from the metaBUS database (see <u>metaBUS.org</u>)

- How trustworthy is our cumulative scientific knowledge on turnover?
 - 92% (77/84) of the turnover distributions were misestimated by a "noticeable" amount (i.e., > 20%; Kepes et al., 2012)
 - 96% (99/103) of the metaBUS distributions were misestimated by a "noticeable" amount

- Does a greater threat to the trustworthiness arise from outliers or publication bias?
 - PB was the source of non-robustness in 92% (77/84) of the turnover metaanalytic mean effect size estimates
 - Outliers was the source of the non-robustness in 48% (40/84) of the turnover meta-analytic mean effect size estimates
 - Therefore, PB > outliers
 - A combined outlier *and* PB effect was observed in 48% (40/84) of the turnover distributions

- Does a greater threat to the trustworthiness arise from outliers or publication bias?
 - PB was the source of non-robustness in 96% (99/103) of the metaBUS metaanalytic mean effect size estimates
 - Outliers was the source of the non-robustness in 74% (76/103) of the metaBUS meta-analytic mean effect size estimates
 - Therefore, and similar to the turnover results, PB > outliers
 - A combined outlier and PB effect was observed in 96% (99/84) distributions

• Do outliers distort meta-analytic results?

- 52% (44/84) of the turnover distributions contained at least one outlier
 - Nine had k < 10 and, thus, could not be reanalyzed after outlier removal
- For the 35 that could be compared, our results suggest that 86% (30/35) of the meta-analytic mean effect size estimates changed after outlier removal
 - 34% (12/30) were misestimated by more than 20%
- Similar results were observed for the metaBUS distributions
 - 81% (83/103) distributions had at least one outlier
 - The meta-analytic mean effect size changed in 68% (54/79) of the cases
 - 11% (9/79) were misestimated by at least 20%

• Do outliers distort publication bias results?

- For the 35 turnover distributions that could be compared::
 - $t \& f_{FE} \bar{r}_o$ remained unchanged following outlier removal in only 31% (11/35) of the cases
 - $t\&f_{RE}\bar{r}_{o}$ remained unchanged following outlier removal in only 20% (7/35) of the cases
 - pr \bar{r}_o remained unchanged following outlier removal in only 40% (14/35) of the cases
 - $pp \bar{r}_o$ remained unchanged following outlier removal in only 37% (13/35) of the cases
 - $\text{sm}_{\text{m}} \bar{r}_{o}$ remained unchanged following outlier removal in only 6% (2/35) of the cases
- For the 79 metaBUS distributions that could be compared:
 - $t\&f_{FE}\bar{r}_o$ remained unchanged following outlier removal in only 27% (21/79) of the cases
 - $t \leq f_{RE} \bar{r}_o$ remained unchanged following outlier removal in only 19% (15/79) of the cases
 - pr \bar{r}_o remained unchanged following outlier removal in only 71% (56/79) of the cases
 - $pp \bar{r}_o$ remained unchanged following outlier removal in only 18% (14/79) of the cases
 - $\text{sm}_{\text{m}} \bar{r}_{o}$ remained unchanged following outlier removal in only 38% (30/79) of the cases

- Do recommendations for practice change after accounting for outliers and PB?
 - Hancock et al. (2013) recommended that most organizations should increase their investments in reducing turnover
 - Estimated that a one SD decrease in turnover would be associated with a \$352 million increase in profits for *Fortune* 1,000 companies
 - However, out results suggest that this may be dramatically overestimated
 - Our FE trim and fill mean estimate following outlier removal (k = 46, t&f_{FE} \bar{r}_o = -.02 suggests that a one SD decrease in turnover would be associated with a \$101 million increase in profits
 - Suggests that the originally estimated financial benefit of a reduction in turnover may be overestimated by \$251 million (or 249%)

- Do recommendations for practice change after accounting for outliers and PB?
 - We found that 75% (12/15) of the recommendations for practice were *not* robust to outliers and publication bias
 - Specifically, at least one of the following three occurred after taking into account the effect of outliers and/or PB
 - The direction of the meta-analytic mean used to justify the recommendation changed
 - The magnitude of he meta-analytic mean used to justify the recommendation changed by at least 20%
 - A moderating effect used to justify the recommendation disappeared
Convergence of PB Detection Methods

Convergence Rates Regarding Practical Differences Before and After Outlier Removal for 35 Turnover Distributions

	Before outlier removal			_					After	er outlier removal	
PB method	Negligible	Moderate	Severe	1.	2.	3.	4.	5.	Negligible	Moderate	Severe
1. t&f _{FE} \bar{r}_o	4 (11%)	6 (17%)	25 (71%)	-	21 (60%)	12 (34%)	26 (74%)	25 (73%)	11 (31%)	6 (17%)	18 (51%)
2. t&f _{<i>RE</i>} \bar{r}_o	15 (43%)	8 (23%)	12 (34%)	16 (46%)	-	20 (57%)	21 (60%)	15 (43%)	16 (47%)	9 (26%)	10 (29%)
3. sm _m \bar{r}_o	16 (47%)	13 (37%)	6 (17%)	10 (29%)	14 (40%)	-	12 (34%)	9 (26%)	25 (71%)	9 (26%)	1 (3%)
4. pr \bar{r}_{o}	8 (23%)	6 (17%)	21 (60%)	23 (66%)	19 (54%)	14 (40%)	-	18 (51%)	12 (34%)	10 (29%)	13 (37%)
5. pp \bar{r}_o	2 (6%)	4 (11%)	29 (83%)	29 (83%)	15 (43%)	9 (26%)	21 (60%)	-	6 (17%)	6 (17%)	23 (66%)

Convergence of PB Detection Methods

- Based on our turnover and metaBUS results we recommend that future meta-analysts use the following to triangulate the potentially most robust estimate of the "true" meta-analytic effect size
 - FE trim and fill model
 - CMA by precision
 - PET-PEESE analysis
- For outlier detection, we recommend Viechtbauer and Cheung's (2010; Viechtbauer 2015) influence diagnostics procedure due to its statistical rigor