Module 3: General Linear Model

MSIR 525

October 14-28, 2019

Recap of Module 2 (check list from syllabus; see pages 1-2)

- We learned about several issues in data sets (e.g., outliers, missing data, non-normal distributions) that may bring into question the robustness of empirical results
- We developed R code that will estimate descriptive statistics for a set of data
- We learned about the importance of interpreting and communicating descriptive statistics (e.g., in tandem, visually and empirically)
- Although we did not perform an ANOVA to assess if means differed across multiple groups, we discuss the technique's utility and limitations
- We learned how to perform a t-test; interpret its results; use its results to inform an evidencebased management decision
 - Importantly, we learned how to "explore further" to gain a better understanding of what the data are telling us

- 10/14/2019
 - Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions

- 10/14/2019
 - Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
 - Procedures to assess the relation between a predictor and a continuous outcome variable

- 10/14/2019
 - Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
 - Procedures to assess the relation between a predictor and a continuous outcome variable
- 10/21/2019
 - Procedures to assess the relation between a predictor and a dichotomous outcome variable

- 10/14/2019
 - Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM assumptions
- 10/16/2019
 - Procedures to assess the relation between a predictor and a continuous outcome variable
- 10/21/2019
 - Procedures to assess the relation between a predictor and a dichotomous outcome variable
- 10/23/2019
 - Module 3 recap and software tutorial

- 10/14/2019
 - Review of hackathon exercise; introduction to the general linear model (GLM); an assessment of the GLM
 assumptions
- 10/16/2019
 - Procedures to assess the relation between a predictor and a continuous outcome variable
- 10/21/2019
 - Procedures to assess the relation between a predictor and a dichotomous outcome variable
- 10/23/2019
 - Module 3 recap and software tutorial
- 10/28/2019
 - In-class exercise for credit (i.e., a hackathon)
 - Determine the strongest correlates of employee performance and turnover behavior

• Let's get started! ©

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

• WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS (MODULE 2)

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

• WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS (MODULE 2)

WHAT DOES THIS MEAN?

• MEASURES OF CENTRAL TENDENCY (E.G., MEAN) SUMMARIZE DATA PERTAINING TO JUST ONE VARIABLE (MODULE 2)

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

- WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS (MODULE 2)
- NOW, WE ARE DEALING WITH BIVARIATE STATISTICS (MODULE 3)

WHAT DOES THIS MEAN?

• MEASURES OF CENTRAL TENDENCY (E.G., MEAN) SUMMARIZE DATA PERTAINING TO JUST ONE VARIABLE (MODULE 2)

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

IMPORTANT POINT

- WE ARE NO LONGER DEALING WITH UNIVARIATE STATISTICS (MODULE 2)
- NOW, WE ARE DEALING WITH BIVARIATE STATISTICS (MODULE 3)

WHAT DOES THIS MEAN?

- MEASURES OF CENTRAL TENDENCY (E.G., MEAN) SUMMARIZE DATA PERTAINING TO JUST ONE VARIABLE (MODULE 2)
- NOW, WE ARE INTERESTED IN THE RELATION BETWEEN TWO VARIABLES (MODULE 3)

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

 Effectively, you want to assess the validity of the organization's current screening tool(s)

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

- Effectively, you want to assess the validity of the organization's current screening tool(s)
 - In other words, are the screening tools useful for forecasting important outcomes that will affect organizational performance

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of *one* variable

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of *one* variable

How can bivariate statistics be used in the aforementioned example?

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of *one* variable

How can bivariate statistics be used in the aforementioned example?

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

How could univariate statistics be used in the aforementioned example?

- To summarize the central tendency of *one* variable

How can bivariate statistics be used in the aforementioned example?

- You're right, we don't know how to do this just yet (it's the whole purpose of Module 3!

So, let's go and learn about the correlation coefficient and the simple linear regression model

How can these relations be summarized?

First, we can use the *correlation coefficient* to measure the association between variables in each of relation of interest

- (1) Test score \rightarrow Performance
- (2) Test score \rightarrow Turnover

How can these relations be summarized?

First, we can use the *correlation coefficient* to measure the <u>association</u> between variables in each of relation of interest

- (1) Test score \rightarrow Performance
- (2) Test score \rightarrow Turnover

A subtle, but very important point, is being made here...

How can these relations be summarized?

First, we can use the *correlation coefficient* to measure the <u>association</u> between variables in each of relation of interest

- (1) Test score \rightarrow Performance
- (2) Test score \rightarrow Turnover

A subtle, but very important point, is being made here...

We are looking at the association between two things.

How can these relations be summarized?

First, we can use the *correlation coefficient* to measure the <u>association</u> between variables in each of relation of interest

- (1) Test score \rightarrow Performance
- (2) Test score \rightarrow Turnover

A subtle, but very important point, is being made here...

We are looking at the association between two things.

We are not predicting one them from another

• Imagine that you are an HR Analyst who is interested in knowing if there is a relationship between an individual's applicant exam score and (a) future job performance and (b) future turnover behavior.

• Effectively, you want to know if the organization's current screening tools have important validity outcomes.